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In recent years modern methods of optimization have contributed greatly to the advances
in data mining and related areas. These contributions continue today and promise to
further advance the state of the art both in terms of modeling innovations and new solu-
tion methodologies. In this paper, we present a new modeling and solution methodology
for unsupervised clustering. Preliminary computational experience is given to illustrate
the approach. This methodology is part of our current research and offers considerable
opportunity for additional investigation to be conducted by other researchers.
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1. Introduction

Data mining, due to its rich variety of important and challenging problems, is
proving to be a fruitful research arena for the optimization community. Early
in the history of data mining, the dominant methods employed were adopted
from standard statistical methodologies. As the optimization community started
working on various problems related to data mining, the limitations of classi-
cal statistical approaches were increasingly exposed as formal optimization based
approaches pointed the way to improved models and solution methods. While
contributions have been made in most aspects of data mining, these advances
are particularly pronounced in the areas of clustering, classification and feature
selection.

In this paper, we highlight a new model for clustering. This model advances
the state of the art in this application area and accordingly holds great promise for
advancing the practice of data mining. In the following sections, we describe the
new model and offer brief comparisons to alternative methods.
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2. A New Model for Clustering

Clustering (unsupervised learning) remains one of the key application areas in data
mining. Given a distance metric derived from an appropriate function on the items
attributes (features), the objective is to group similar items together so that the
“within group distances” are small and the “between group distances” are large.
Applications of clustering are found in many disciplines ranging from market seg-
mentation studies intended to segregate similar customers to MircoArray data anal-
ysis intended to better understand how different genes co-express themselves in
response to different treatments.

A natural perspective on clustering is to adopt a graph theoretical point of view
where data points are taken as nodes in a graph connected by edges with edge
weights denoting the similarity of each pair of nodes in the network. The clustering
problem, then, is to partition the graph into cliques with similar characteristics.
This clique partitioning problem has long been recognized as a fruitful conceptual
approach to adopt for clustering (see, e.g. Mirkin,1 Grotschel and Wakabayashi,2

Mehrotra and Trick3 and Dorndorf and Pesch).4

Despite its appealing conceptual qualities, the clique partitioning model has not
been widely employed in practice due to the difficulty of solving the standard 0/1
programming model for clique partitioning (CP). Where the model has been applied
to small clustering problems, the results have been very effective. For medium
to large clustering problems, however, the standard optimization model for CP
explodes in size making it difficult if not impossible to solve by standard methods.
This computational difficulty has served to preclude the broader use of the clique
partitioning model as a tool for clustering.

The alternative model we present here for clique partitioning removes the size
and computational obstacles. Consequently, our approach opens the door for the
widespread adoption of clique partitioning as a modeling and solution methodology
for the general clustering problem. This model has been shown by Wang et al.,5 to
have several advantages over the standard K-means procedure that is often used
in practice.

2.1. The CP problem

Consider a graph G = (V, E) with n vertices and unrestricted edge weights, where
V is the vertex set and E is the edge set. The CP problem consists of partitioning
the graph into cliques such that the sum of the edges weights over all cliques formed
is as large as possible.

Standard 0/1 Linear Model: The standard optimization model for CP (see
for instance Oosten et al.6 is given by:

CP(edge) : max x0 =
∑

(i,j)∈E

wijxij (1)

st
xij + xir − xjr ≤ 1 ∀ distinct i, j, r ∈ V.

xij ∈ {0, 1}
(2)
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The wij coefficients are unrestricted edge weights and xij is defined to be 1 if
edge (i, j) is in the partition, and equal to 0 otherwise. Note that this is an edge-
based formulation and even for modest sized graphs, this model explodes in size,
having n(n− 1)/2 variables and 3Cn

3 constraints. Despite these size characteristics,
the dominant methods presented in the literature for solving CP(edge) are exact
approaches based on LP methods as illustrated by the cutting plane approaches
of Grotschel and Wakabayashi2 and Oosten et al.,6 and the column generation
approach of Mehrotra and Trick.3 These approaches have proven to be successful
on small to moderate size problems. For larger instances, however, the application of
these approaches is severely limited due the challenge presented by the large size of
CP(edge). For such cases, Metaheuristic methods, coupled with a new formulation,
prove to be very effective as illustrated later.

2.2. New formulation

The computational challenge posed by CP(edge) for large problems motivates the
development of a new formulation that can be readily solved by basic metaheuris-
tic methodologies. We first present the new model and then describe our solution
approach.

As before, n is the number of nodes (vertices) and the wij are unrestricted edge
weights. Without loss of generality we assume here that G is a complete graph. If
necessary, artificial edges with negative (penalty) edge weights can be introduced as
needed to produce a complete graph in those cases where G is not initially complete.
In addition, define

Kmax = maximum number of cliques allowed (an educated guess)

and

xik = 1 if node i is assigned to clique k; 0 otherwise.

Then our model is:

CP (node): max x0 =
n−1∑

i=1

n∑

j=i+1

wij

Kmax∑

k=1

xikxjk (3)

st
Kmax∑

k=1

xik = 1, i = 1, . . . , n.
(4)

Note that the quadratic terms in the objective function imply that the weight wij

becomes part of the partition weight only when nodes i and j are assigned to the
same clique. The constraints of Eq. (4) require that each node is assigned to one of
the cliques.

Several remarks about this model are in order: First of all, this is a node-oriented
model with many fewer variables than CP(edge), since n(Kmax) is typically much
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less than n(n − 1)/2. Furthermore, the number of constraints (n) is much smaller
than the corresponding number (3Cn

3 ) for the edge-oriented model of CP(edge).
While CP(edge) is a linear model and CP(node) is quadratic, the size difference
enables this quadratic alternative to be used for large instances of clique partition-
ing problems where the computational burden of CP(edge) precludes its practical
use. CP(node) can be effectively solved, even for large instances, by modern meta-
heuristic methods such as Tabu Search (see, Glover et al.,7 for details).

Example: We illustrate our approach to clique partitioning via CP(node) by the
following example: Consider the graph
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Adding artificial edges (2, 4) and (3, 4) with edge weights equal to −P , we get the
complete graph
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Taking (arbitrarily) Kmax to be 3, CP(node) becomes:

max x0 = 10x11x21 + 4x11x31 + 6x11x41 − 2x21x31 − Px21x41 − Px31x41

+ 10x12x22 + 4x12x32 + 6x12x42 − 2x22x32 − Px32x42 − Px32x42

+ 10x13x23 + 4x13x33 + 6x13x43 − 2x23x33 − Px23x43 − Px33x43

st
x11 + x12 + x13 = 1
x21 + x22 + x23 = 1
x31 + x32 + x33 = 1
x41 + x42 + x43 = 1

Taking the scalar penalty P to be sufficiently large (like P = 20), this model
is easily solved to give the non-zero assignments x11 = x21 = x31 = x42 = 1. Thus
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the optimal solution to CP(node) consists of two cliques with an objective function
value of x0 = 12 with nodes 1, 2 and 3 assigned to one clique and node 4 assigned
to a second clique. Note that while we allowed for the possibility of three cliques,
only two were used in our solution implying that our initial choice of Kmax = 3 was
more than sufficient.

The computational superiority of CP(node) over CP(edge) is well documented
in the literature via substantial computational experimentation as shown in Glover
et al.8 This computational advantage, coupled with the natural attractiveness of
cliques, makes CP(node) an attractive model to adopt for clustering.

3. Summary and Conclusions

In this paper, we presented a new model for the clique partitioning problem that
has significant application potential in the area of clustering. Our model eliminates
the computational restrictions associated with the more standard “linear” model
for clique partitioning and in doing so facilitates the widespread adoption of clique
partitioning as a useful model for clustering. Computational comparisons with stan-
dard methods for clustering (such as K-means) indicate that our model CP(node)
produces superior clustering results as evaluated by silhouette coefficients and other
objective measures of cluster quality.
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